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Abstract: In the field of natural language processing (NLP) and large language 

models (LLMS), a comprehensive study has been conducted on a number of machine 
learning models and methods for extracting, understanding, and generating textual 
information. The main focus was on using the capabilities of models of different 
generations to solve a classification problem using machine learning, which was 
trained, validated and tested on synthetically generated text data from ChatGPT the 
GPT-4o version. 

The experiments began by evaluating basic models such as TF-IDF, Word2Vec, 
Doc2Vec, FastText, and ended up with Transformer-based models. These models were 
used to extract embeddings from text data, which laid the foundation for subsequent 
intent classification. This initial stage of the experiments allowed to obtain valuable 
information about the effectiveness of various embedding methods and their impact on 
the subsequent Chatbot classification task. This article describes an optimization 
through these various stages of experimentation and learning, culminating in a holistic 
understanding of the various NLP and LLM models and their applications.  

 

 

1. Introduction 

Text data preprocessing is the basis for analyzing any NLP task. This data is presented in a form that is 

understandable by machine learning and deep learning algorithms, and the further process is carried out 

in the form of word or document embeddings, which are vectors of numerical entries. These 

embeddings contain syntactic and semantic information about symbols, words, or sentences in the text. 

Machines cannot understand string (text) data the way humans do, and therefore they are provided with 

representations of text – embeddings that are vectors or arrays containing numeric values, which are 

machine language. 

From TF-IDF to BERT, text representation has undergone radical changes in recent years and has led to 

improved performance in many tasks, in particular, thanks to pre-trained versions of modern models. 

These pre-trained models can be used in many tasks without the need to create and train them 

completely from scratch. This is a huge advantage, but their versatility is limited. When the subject area 

and vocabulary are specific, they work worse. 

In recent years, the field of text representation has undergone a noticeable evolution, moving from 

traditional methodologies to advanced methods using the capabilities of neural networks. Statistical 

models provided a solid foundation for quantifying the importance of words in documents, but the 

limitations of these methods in capturing context and semantics became apparent with the advent of 
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neural models. 

Neural models have become an innovative approach to placing words in a continuous vector space that 

captures semantic connections and analogies. They have served as a catalyst for the transition to 

distributed word representations, revolutionizing the way machines understand the nuances of human 

language. Further extensions based on the original neural models extended this paradigm to entire 

documents, providing a holistic understanding that goes beyond individual words. 

Similarly, the textual representation has undergone significant changes with the advent of transformer-

based models (a type of neural network architecture), which introduced a text understanding model 

BERT. This huge leap led to bidirectional contextualized embeddings, which led to a breakthrough in 

the field of context definition and semantics. BERT's pre-training and fine-tuning mechanisms have 

broken down barriers, providing state-of-the-art performance in solving various tasks related to artificial 

intelligence. The influence of BERT has generated a number of "pre-trained" models that have enhanced 

its transformative impact. 

2. Background 

Language can be defined as a set of rules in which characters are combined and used to convey 

information. Although perceiving linguistic information in the form of text or speech and making sense 

of it is an extremely complex cognitive ability of our brain, we are not aware of this, because it comes to 

us naturally. Language is the basis for natural language processing (NLP), which is an area of artificial 

intelligence and computer science that uses machine learning and deep learning to enable computers to 

understand and communicate with human language. Being a vast field, it has given us generative AI and 

large language models (LLM). In recent years, we have been using NLP more and more often without 

even realizing it. Online translators, chatbots, typo correctors, etc. are all examples of NLP. Large 

Language Models (LLM) allow you to understand and generate human language in your field. They 

mostly learn from a huge amount of data from the Internet and books and require a lot of computational 

power. Pre-trained models can additionally be used for a particular task by being fine-tuned, which will 

allow them to adapt to the task or field of activity. The beauty of language models is that they can be 

integrated with non-language models to perform more complex tasks, such as creating images or audio 

recordings from a text or voice prompt. 

2.2 Embeddings 

Representing words and documents in such a way that machines can understand and perform tasks on 

them is one of the most important aspects of NLP. It was found to be useful to represent them as vectors. 

These vectors with elements in the form of numbers can represent text in a vector space. The entries 

represent characteristics of the text corpus, such as the frequency of occurrence of words or any other 

representation. By storing information about a specific text corpus, they become embeddings, where the 

location of each embedding in a vector space provides useful information, such as how close words or 

sentences are semantically and syntactically. Words are ambiguous. For example, the word “light” can 

mean something not heavy or something not dark. We humans can tell the difference based on the 

content, just like embeddings. An embedding can be trained based on the text corpus carrying the 

meaning of the word. If the text referred to a light object, then the embedding in a vector space could 

have the form [-0.5, 0.2], and if the text referred to a non-dark object, then the embedding could be 

[0.75, 0.6]. In Figure 1, we can see that both words are located in different places in the vector space, 

which leads to machines treating them as different instances with different symbolic and syntactic 

meanings. They could serve as different inputs for a machine learning model.     
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Figure 1: Representaion of word embeddings 

2.3 Models 

During the survey, two types of machine learning models were used for classification: random forest 

(RF) and support vector machine (SVM). These are models that have proven their effectiveness in 

various classification tasks. One of their advantages is the ability to generalize on previously unseen 

data well. 

The random forest algorithm is based on decision trees and ensemble voting. It works well with both 

numerical and categorical features, reduces overfitting compared to a single decision tree, and handles 

multidimensional data well. During inference, it outputs the mode of the classes. 

�̂� = mode(ℎ1(𝑥), ℎ2(𝑥),… , ℎ𝑇(𝑥)) 

Random Forest (Classification)  

Support Vector Machine is a powerful algorithm that finds the best boundary (called a hyperplane) that 

separates different classes. The goal is to maximize the margin between the classes — the wider the 

margin, the better the model can generalize. It operates well with high dimensional data, has strong 

mathematical and theoretical foundations for classification and is considered effective when the number 

of features is greater than the number of samples. 

�̂� = sign(𝑤𝑇𝑥 + 𝑏) 

Support Vector Machine (Linear Classification) 

If using a Kernel (for non-linear cases): 

�̂� = sign(∑α𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

𝑁

𝑖=1

+ 𝑏) 

Support Vector Machine (With Kernel Function) 

Experiments and Results 

The main purpose of the experiments conducted in the framework of this study was to compare and 

optimize modern NLP word embedding techniques that to be used in a classification system of a 

chatbot. Although many websites currently use artificial intelligence agents in their chatbots, this 

approach is not necessary, especially for small businesses or early-stage startups. Not to mention that 

they are quite expensive. Therefore, the use of chatbots, which have a classification model in their 

system for answering questions or determining intentions, is still in high demand. Before chatbots start 

processing customer requests, they have their embedding layer that converts the customer's input request 

in text form into embeddings that the chatbot can understand and process. The quality of a chatbot's 
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work directly depends on these embeddings, and since different methods produce different embeddings, 

the experiments showed how well each of them performs. The stages of the experiments were 

distributed as follows:  

 Initial handling of the environment was carried out. That included choosing state-of-the-art models 

for representation of text, selecting machine learning models for Classification and a set of 

technologies to be used.  

 Text preprocessing which is cleaning and transforming raw text data into a format suitable for 

embedding models. 

 Training the selected embedding models on the generated, by ChatGPT, synthetic data. 

 Using the embeddings as inputs and train the Chatbot for classification. 

During the preprocessing the text data had gone through the following steps: 

1. Tokenization: 

 The text was broken down into individual words. 

2. Lowercasing: 

 All the text was converted into lowercase to ensure uniformity 

3. Removing punctuation: 

 Punctuation marks such as commas, periods and questions marks were removed. 

4. Removing stop words: 

 Common words that do not carry much semantic meaning such as articles and some auxiliary verbs 

were eliminated. 

5. Stemming and Lemmatization: 

 The words were reduced to their root form. 

After the preprocessing step, the text data had been trained with different state-of-the-art models used to 

retrieve embeddings. For classification the text corpus represented each sentence as a unique question 

asked the chatbot to reply and their corresponding syntactically created target labels that served as 

classes to which those questions could be bounded to. The dataset had been split into train/test sets with 

80% corresponding to the training set and 20% to the test set. 

TF-IDF 

Term Frequency - Inverse Document Frequency (TF-IDF) is a widely used statistical technique in 

natural language processing and information retrieval. It measures how important a word in a corpus is 

relative to other words in the corpus by calculating its frequency and proportion. Words that appear less 

get higher weights than the words that appear more. Although this statistical approach was introduced 

back in the 1970s, it is still used today for various machine learning and statistical problems.  

Term Frequency (TF): 

𝑇𝐹(𝑡, 𝑑) =
Number of occurrences of term 𝑡 in document 𝑑

Total number of terms in the document 𝑑
 

 

Inverse Document Frequency (IDF): 

𝐼𝐷𝐹(𝑡, 𝐷) = log𝑒 (
Total number of documents in the corpus

Number of documents with term 𝑡 in them
) 

TF-IDF: 
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𝑇𝐹-𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡, 𝐷) 

TF-IDF calculation 

During the experiment, several n-gram ranges of TF-IDF had been explored. The N-Gram range allows 

to set the sequence length of consecutive words in a given text. For instance, the n-gram range (1, 4) 

means the algorithm will consider the unigram (only single word), bigram (group of 2 consecutive 

words), trigram (group of 3 consecutive words) and fourgram (group of 4 consecutive words) to build a 

vocabulary. Eventually the range of (1, 1) was decided to be used. The sentence embeddings derived, 

after the model had been trained, had the dimension of 2685, corresponding to the size of the 

vocabulary. This number represents the number of unique words that the TF-IDF model had 

encountered. Hence, TF-IDF produced sparse vectors (small number of non-zero elements) in contrast 

to dense vectors in the later experiments. Further, the derived embeddings were used to train both 

Random Forest and Support Vector Machine models to classify the sentence vectors into their 

corresponding classes. 

Model Accuracy F1-score 

Random Forest 0.90 0.85 

Support Vector Machine 0.88 0.83 

Table 1: Classification performance using TF-IDF embeddings on the test dataset 

Despite the embeddings being sparse the F1-score and Accuracy demonstrated high values. 

Word2Vec 

The next approach for obtaining word embeddings came much later, in 2013, and it is called Word2Vec. 

It was introduced by Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean at Google in their 

research paper titled "Efficient Estimation of Word Representations in Vector Space. As the name 

suggests, it takes a word and transforms it into dense vectors. Unlike the previous approach, this uses 

Neural Networks to train embeddings. It has two types of architecture:  

 Continuous bag-of-words (CBOW) 

 Continuous skip-gram.  

Continuous bag-of-words (CBOW) predicts the center word from the unstructured raw input text in a 

fixed context window size and Continuous skip-gram does the opposite, trying to predict the context 

(surrounding) words. This technique is called self-supervised learning as it combines both supervised 

and unsupervised learning. The initial training text corpus is raw and has no labels, however during 

training, the target words that the model tries to predict become the labels. Both architectures use 2 

neural layers. This approach allows embeddings to capture semantic and syntactic relationships between 

the words. The Gensim library was used to train word embeddings. Those word embeddings had been 

then aggregated into sentence embeddings with the MeanPooling technique. With MeanPooling every 

word embedding gets their element-wise mean and concatenates into sentence embeddings. Table 2 

gives the results of the Random Forest and Support Vector Machine classifiers with the derived sentence 

embeddings. 

Model Accuracy F1-score 

Random Forest 0.89 0.82 

Support Vector Machine 0.452 0.42 

Table 2: Classification performance using Word2Vec embeddings on the test dataset 

Although, Word2vec is considered a newer approach that uses neural networks to train dense vectors, it 

did poorly in the classification task with Support Vector Machine compared to TF-IDF. 
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Doc2Vec 

Doc2Vec, also known as Paragraph Vector, is an extension of the Word2Vec model designed to 

generate dense vector representations for entire documents or paragraphs of text. It was proposed by Le 

and Mikolov in their paper "Distributed Representations of Sentences and Documents" in 2014. Similar 

to Word2Vec, Doc2Vec uses neural network architectures- Continuous Bag of Words (CBOW) and 

Skip-gram to train dense document embeddings. The key idea is to include an additional vector, called a 

document tag, which is used to represent the document context along with the word context. This 

approach needs no Mean Pooling on a sequence of words as it generates vectors representing the 

syntactic and semantic meaning of the whole sentence (document). The CBOW architecture was used to 

train the embeddings. 

Model Accuracy F1-score 

Random Forest 0.766 0.78 

Support Vector Machine 0.689 0.70 

Table 3: Classification performance using Doc2Vec embeddings on the test dataset 

The results of Doc2vec do not differ much from that of its predecessor Word2Vec. However, Doc2Vec 

is extremely convenient working with sentences instead of words as it automatically trains document 

(sentence) embeddings.  

FastText 

FastText is an open-source library for efficient text representation and classification developed by 

Facebook’s AI Research (FAIR) lab. The research paper is titled "Enriching Word Vectors with 

Subword Information" by Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov, which 

waspublishedin2016. It is an extension of Word2Vec but unlike it, it represents each word in a character 

level forming groups of characters using the skip-gram technique. It handles out-of-vocabulary (OOV) 

words by constructing words out of symbols. As a result, FastText captures the semantic and syntactic 

meaning of words even for rare, incorrect or unseen words. 

 

Figure 2: FastText Character-Level Word Model 

Character-level words:  

"fast" → ["fa", "as", "st"]  

"text" → ["te", "ex", "xt"] 

Model Accuracy F1-score 

Random Forest 0.781 0.75 

Support Vector Machine 0.623 0.60 

Table 4: Classification performance using FastText embeddings on the test dataset 

With FastText one does not have to worry about the unseen words in the test dataset that the trained 

model’s vocabulary had not included. This can also serve as a feature of stability. 

BERT 

The paper called "Attention is all you need" by Google scholars and the University of Toronto first 

introduced transformers and moved forward the field of AI both in academia and industry, and made 

NLP extremely popular among machine learning engineers. The transformer is a deep 

https://en.wikipedia.org/wiki/Deep_learning
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learning architecture based on the multi-head attention mechanism, that uses neural networks to train 

embeddings from text. The transformer’s encoder part of the architecture led to the development of a 

model called BERT (Bidirectional Encoder Representations from Transformers) that was introduced by 

Jacob Devlin and his colleagues at Google AI Language. It was released in 2018. The paper detailing 

the BERT model is titled "BERT: Pre-training of Deep Bidirectional Transformers for Language 

Understanding. BERT trains deep bidirectional embeddings from unlabeled text by jointly learning on 

both left and right context. One of the biggest advantages of BERT and other transformer-based models 

is the ability to be fine-tuned. This way the models can perform a desired task without the need to be 

fully trained from the beginning. It greatly reduces the computation time, computational power and 

helps outperform other models. Pre-trained BERT did not perform that well as can be observed in table 

5. 

Model Accuracy F1-score 

Random Forest 0.66 0.62 

Support Vector Machine 0.63 0.58 

Table 5: Classification performance using pre-trained BERT embeddings on the test dataset 

However, after fine-tuning the BERT model the result outperform all the previous models. 

Model Accuracy F1-score 

Random Forest 0.95 0.87 

Support Vector Machine 0.92 0.84 

Table 6: Classification performance using fine-tuned BERT embeddings on the test dataset 

Conclusion 

This study provided a comprehensive analysis and optimization of various Natural Language Processing 

(NLP) embedding methods and their performance in the supervised intent classification task for a 

chatbot system. Beginning with traditional statistical technique such as TF-IDF and advancing through 

neural network-based methods like Word2Vec, Doc2Vec, FastText, and finally, Transformer-based 

models as BERT, the experiments showed the strength of each of them. The results say that TF-IDF is a 

great technique despite being the oldest among them. The fine-tuned BERT proved the power of the 

Transformer by having demonstrated the highest performance. The results show that lighter embedding 

methods for resource-constrained systems still can be a great option. If resources allow then Large 

language Models are the best to achieve the highest performance possible. 
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