Local Classification Around the Special Case of a Planar Mechanism

Authors

  • A. S. Barotov Samarkand State University
  • Z. U. Ulug`murodova Samarkand State University

Abstract

The number of equations is m, the number of state coordinates corresponds to U, and n is called the degree of freedom of the mechanism. In general, the degree of freedom of the mechanism is found by the equation n=k-m [1], where k is the number of unknowns in the system of equations.

References

Баротов А.С. Алгоритм вычисления особенностей алгебраических кривых возникающих в робототехнике ⁄⁄ Узбекский математический журнал.-Ташкент,2011.-№ 1.-С.

Брюно А.Д. Солеев А. Локальная униформизация ветвей пространственной кревой и многоранники Ньютона ⁄⁄ Алгебра ианализ Т. 3, вып. 1,(1991), С. 67-102.

Брюно А.Д. Солеев А. Классификация особенностей функции положения механизмов ⁄⁄ Проблемы машиностроения инадежности машин. № 1, 1994.С.102-109.

Z.U. Ulug'murodova, A.S. Barotov. Asymptotic Representation of a Two-Dimensional Robotic Mechanism around a Special Case. European Journal of Innovation in Nonformal Education (EJINE) Volume 4 | Issue 6 | June - 2024 ISSN: 2795-8612.

Published

2024-12-06

How to Cite

Barotov, A. S., & Ulug`murodova, Z. U. (2024). Local Classification Around the Special Case of a Planar Mechanism. International Journal of Informatics and Data Science Research, 1(11), 9–16. Retrieved from https://scientificbulletin.com/index.php/IJIDSR/article/view/449