Transformative Technologies and the Future of AI in Trucking
Keywords:
Artificial Intelligence in Logistics, Predictive Maintenance, Autonomous Trucking, Fleet AnalyticsAbstract
The long-haul trucking industry is facing unprecedented economic challenges, including inflation-driven operational costs, persistent driver shortages, fuel price volatility, and evolving supply chain demands. This article investigates how transformative artificial intelligence (AI) technologies can address these issues and shape the future of trucking. While AI applications in freight logistics are growing, a clear gap exists in understanding the practical implementation pathways and measured impacts on economic resilience and operational efficiency. This study uses a qualitative, case-based methodology, analyzing industry reports and real-world deployments by major logistics firms such as UPS, Convoy, and C.H. Robinson. Key findings highlight that AI-powered freight matching reduces empty miles by up to 33%, dynamic pricing engines improve rate responsiveness, and intelligent dispatch systems enhance route efficiency and driver utilization. These AI tools are shown to mitigate the effects of fuel volatility, labor constraints, and cost inflation. Results suggest that integrating AI leads to measurable economic benefits, including lower per-mile costs and improved asset utilization, especially when phased deployment and workforce training are prioritized. The implications are twofold: first, that AI offers a viable strategy for increasing trucking sector resilience in volatile conditions; and second, that stakeholder collaboration between tech providers, carriers, and policymakers is essential for scalable, responsible adoption. This article contributes to the field by bridging the gap between AI potential and implementation reality in long-haul trucking, offering evidence-based insights for researchers, industry leaders, and regulators.
References
V. Mandala и P. D. N. K. Kommisetty, «Advancing predictive failure analytics in automotive safety: AI-driven approaches for school buses and commercial trucks», J Artif Intell Big Data, т. 2, сс. 9–20, 2022.
D. Garikapati и S. S. Shetiya, «Avtonom transport vositalari: sun’iy intellektning evolyutsiyasi va hozirgi sanoat landshafti», Katta Malumotlar Va Kognitiv Hisoblash, т. 8, вып. 4, с. 42, 2024.
IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems, «Ethically Aligned Design». 2022 г. [Онлайн]. Доступно на: https://ethicsinaction.ieee.org
B. Mirzayev, «GLOBAL LOGISTIKADA AVTONOM YUK AVTOMOBILLARI INTEGRATSIYANI IQTISODIY VA MEZORIY O‘LCHIMLARI», Fan Va Innov., т. 3, вып. A11, сс. 29–36, 2024.
Y. Adeoye, E. F. Onotole, T. Ogunyankinnu, G. Aipoh, A. A. Osunkanmi, и J. Egbemhenghe, «Logistika va tarqatishda sun’iy intellekt: O’z-o’zidan boshqariladigan yuk mashinalari va dronlarni etkazib berish tizimlarini o’z ichiga olgan transport uchun dinamik marshrutni rejalashtirishda AI funktsiyasi». 2025 г.
J. Kern, «Logistikaning raqamli transformatsiyasi: texnologiyalar va ularni amalga oshirish holati haqida sharh», в Logistikaning raqamli transformatsiyasi: To’rtinchi sanoat inqilobining sirsiz ta’siri, 2021, сс. 361–403.
J. Clark, «Predictive maintenance: A fleet’s crystal ball for controlling costs», FleetOwner, фев. 2025, [Онлайн]. Доступно на: https://www.fleetowner.com
U.S. Department of Transportation, «Preparing the Future of Transportation with AI». 2023 г. [Онлайн]. Доступно на: https://www.transportation.gov
OECD, «Principles on Artificial Intelligence». 2021 г. [Онлайн]. Доступно на: https://oecd.ai/en/
C. Dong, A. Akram, D. Andersson, P. O. Arnäs, и G. Stefansson, «Raqamli davrda yuk tashishda rivojlanayotgan va buzuvchi texnologiyalarning ta’siri: hozirgi holat va kelajak tendentsiyalari», Logistika Menejmenti Xalqaro Jurnali, т. 32, вып. 2, сс. 386–412, 2021.
D. Mahajan и V. Aggarwal, «Ta’minot zanjirlarini o’zgartirish: kelajakdagi logistikada intellektual transport tizimlarining o’rni», в Ta’minot zanjiri ekotizimlarini o’zgartirishda: texnologik innovatsiyalar va hamkorlik, Emerald Publishing Limited, 2025, сс. 161–172.
G. Rizzoni, Q. Ahmad, M. Arasu, и P. S. Oruganti, «Transformatsion texnologiyalar transportni qayta shakllantiradi - Akademiyalar istiqboli», SAE, 2019-01–2620, 2019.
C. Heinbach, M. Birle, и G. H. Korn, «Transport-uskunalar-xizmat sifatida: ma’lumotlarga asoslangan ekspeditorlik biznesida aqlli yarim tirkamalar tomon», 2024.
M. Roeth, «Transportni qayta shakllantiradigan transformatsion texnologiyalar - sanoat istiqboli», SAE Int. J. Adv. Curr. Pract. Mobil., т. 3, вып. 2020-01–1945, сс. 5–48, 2020.
A. Kelkar, K. Heineke, M. Kellner, и T. Möller, «Will autonomy usher in the future of truck freight transportation?» McKinsey & Company, сентябрь 2024 г. [Онлайн]. Доступно на: https://www.mckinsey.com