Existence and Uniqueness of Fixed Points for Multivalued Mappings in Complete Metric Spaces

Authors

  • Neeru yadav (Mathematics), Starex University, Gurgaon, Haryana, Ghisa Nagar, Delhi Road, Rewari, Haryana, India

Keywords:

Fixed point theory, Multivalued mappings, Complete metric spaces, Hausdorff metric, Contractive conditions

Abstract

This paper investigates the existence and uniqueness of fixed points for multivalued mappings in complete metric spaces. We introduce a new class of contractive conditions for multivalued mappings and establish fixed point theorems that generalize several classical results. Our approach relies on the Hausdorff metric and a novel auxiliary function that characterizes the contraction properties. The theoretical framework developed here extends previous work by weakening certain assumptions while maintaining the essential characteristics needed for fixed point guarantees. Applications to integral inclusions and differential equations are discussed, highlighting the practical significance of the results.

References

Agarwal, R. P., O'Regan, D., & Sahu, D. R. (2018). Fixed point theory for Lipschitzian-type mappings with applications. Springer.

Beg, I., & Azam, A. (1992). Fixed points of asymptotically regular multivalued mappings. Journal of the Australian Mathematical Society, 53(3), 313-326.

Berinde, V. (2007). Iterative approximation of fixed points. Springer.

Czerwik, S. (1993). Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1), 5-11.

Ćirić, L. B. (2003). Multivalued nonlinear contraction mappings. Nonlinear Analysis: Theory, Methods & Applications, 71(7-8), 2716-2723.

Covitz, H., & Nadler, S. B. (1970). Multi-valued contraction mappings in generalized metric spaces. Israel Journal of Mathematics, 8(1), 5-11.

Deimling, K. (1992). Multivalued differential equations. Walter de Gruyter.

Dhage, B. C. (1999). Multivalued mapping and fixed points. Nonlinear Functional Analysis and Applications, 4(2), 257-265.

Heilpern, S. (1981). Fuzzy mappings and fixed point theorem. Journal of Mathematical Analysis and Applications, 83(2), 566-569.

Itoh, S. (1977). A random fixed point theorem for a multivalued contraction mapping. Pacific Journal of Mathematics, 68(1), 85-90.

Kaneko, H. (1986). Generalized contractive multivalued mappings and their fixed points. Mathematica Japonica, 33(1), 57-64.

Khamsi, M. A., & Kirk, W. A. (2011). An introduction to metric spaces and fixed point theory. John Wiley & Sons.

Klim, D., & Wardowski, D. (2007). Fixed point theorems for set-valued contractions in complete metric spaces. Journal of Mathematical Analysis and Applications, 334(1), 132-139.

Markin, J. T. (1973). A fixed point theorem for set valued mappings. Bulletin of the American Mathematical Society, 79(5), 1030-1032.

Mizoguchi, N., & Takahashi, W. (1989). Fixed point theorems for multivalued mappings on complete metric spaces. Journal of Mathematical Analysis and Applications, 141(1), 177-188.

Nadler, S. B. (1969). Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), 475-488.

Pathak, H. K., & Shahzad, N. (2015). Fixed point results for set-valued contractions by altering distances in complete metric spaces. Nonlinear Analysis: Theory, Methods & Applications, 70(7), 2634-2641.

Reich, S. (1972). Fixed points of contractive functions. Bollettino dell'Unione Matematica Italiana, 5(1), 26-42.

Suzuki, T. (2008). Generalized distance and existence theorems in complete metric spaces. Journal of Mathematical Analysis and Applications, 253(2), 440-458.

Tarafdar, E. (1975). An approach to fixed-point theorems on uniform spaces. Transactions of the American Mathematical Society, 191, 209-225.

Xu, H. K. (2002). Multivalued nonexpansive mappings in Banach spaces. Nonlinear Analysis: Theory, Methods & Applications, 43(6), 693-706.

Downloads

Published

2025-05-17

How to Cite

yadav, N. (2025). Existence and Uniqueness of Fixed Points for Multivalued Mappings in Complete Metric Spaces. International Journal of Informatics and Data Science Research, 2(5), 57–62. Retrieved from https://scientificbulletin.com/index.php/IJIDSR/article/view/921

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.