ASSESSING THE EFFECTIVE OF ARTIFICIAL INTELLIGENCE IN PREVENTING CYBER ATTACKS ON BUSINESSES

Authors

  • Jafrin Reza Master of Science in Business Analytics, Trine University, USA

Keywords:

Artificial Intelligence, Cybersecurity, Threat Detection, AI-Powered Security, Machine Learning, Incident Response

Abstract

Modern businesses deploy artificial intelligence (AI) as their central cybersecurity solution because it strengthens threat identification together with response protocols and risk protection operations. A review of AI-supported security measures for threat prevention and detection and threat management is conducted through an examination of Microsoft Security Incident Prediction dataset (2023). Supervised machine learning helps the research to understand threat patterns and test AI detection methods while validating predictive models which decrease security vulnerabilities. Visual data analysis through a combination of Tableau and Python tools demonstrates how artificial intelligence helps detection standards as well as enhances incident reactions and lowers false alarms. This research evaluates AI security frameworks to stop cyber-attacks through their three key features which are better detection accuracy and fewer false alarms together with faster response times. The paper analyzes AI abilities through a quantitative analysis by utilizing the Microsoft Security Incident Prediction dataset. Researchers use Python along with Tableau and computational models and machine learning approaches to assess detection outcomes and response times and false alarms of AI-based systems against normal security protocols. Research studies confirm the great power of AI-based cybersecurity technology to enhance danger identification along with minimizing security breaches and accelerating incident response processes. The adoption of AI in cybersecurity faces major hindrances because of systematic program biases as well as high numbers of error alerts and privacy-related issues. The study emphasizes the need to enhance AI algorithms and combines blockchain security with threat intelligence distribution to achieve regulatory compliance through explainable AI. Operating businesses need to make adaptive AI-driven security frameworks their top priority because cyber threats continue developing to protect their critical assets while securing operational resilience. Through its research outcomes this study presents important information about how AI performs in the cybersecurity space for creating practical strategic guidelines to enhance business cybersecurity systems.

References

1. Bouramdane, A. A. (2023). Cyberattacks in smart grids: challenges and solving the multi-criteria decision-making for cybersecurity options, including ones that incorporate artificial intelligence, using an analytical hierarchy process. Journal of Cybersecurity and Privacy, 3(4), 662-705. https://www.mdpi.com/2624-800X/3/4/31

2. De Azambuja, A. J. G., Plesker, C., Schützer, K., Anderl, R., Schleich, B., & Almeida, V. R. (2023). Artificial intelligence-based cyber security in the context of industry 4.0—a survey. Electronics, 12(8), 1920. https://www.mdpi.com/2079-9292/12/8/1920

3. Alrfai, M. M., Alqudah, H., Lutfi, A., Al-Kofahi, M., Alrawad, M., & Almaiah, M. A. (2023). The influence of artificial intelligence on the AISs efficiency: Moderating effect of the cyber security. Cogent Social Sciences, 9(2), 2243719. https://www.tandfonline.com/doi/full/10.1080/23311886.2023.2243719#abstract

4. Ali, A., Septyanto, A. W., Chaudhary, I., Al Hamadi, H., Alzoubi, H. M., & Khan, Z. F. (2022, February). Applied artificial intelligence as event horizon of cyber security. In 2022 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-7). IEEE. https://ieeexplore.ieee.org/abstract/document/9759076

5. Ozkan-Okay, M., Akin, E., Aslan, Ö., Kosunalp, S., Iliev, T., Stoyanov, I., & Beloev, I. (2024). A comprehensive survey: Evaluating the efficiency of artificial intelligence and machine learning techniques on cyber security solutions. IEEe Access, 12, 12229-12256. https://ieeexplore.ieee.org/abstract/document/10403908

6. Qasaimeh, G. M., & Jaradeh, H. E. (2022). The impact of artificial intelligence on the effective applying of cyber governance in Jordanian commercial banks. International Journal of Technology Innovation and Management (IJTIM), 2(1). https://www.journals.gaftim.com/index.php/ijtim/article/view/61

7. Chakraborty, A., Biswas, A., & Khan, A. K. (2023). Artificial intelligence for cybersecurity: Threats, attacks and mitigation. In Artificial intelligence for societal issues (pp. 3-25). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-12419-8_1

8. Manoharan, A., & Sarker, M. (2023). Revolutionizing Cybersecurity: Unleashing the Power of Artificial Intelligence and Machine Learning for Next-Generation Threat Detection. DOI: https://www. doi. org/10.56726/IRJMETS32644, 1. https://d1wqtxts1xzle7.cloudfront.net/112737594/REVOLUTIONIZING_CYBERSECURITY-libre.pdf?1711378319=&response-content-disposition=inline%3B+filename%3DREVOLUTIONIZING_CYBERSECURITY_UNLEASHING.pdf&Expires=1741472433&Signature=RmXSFWl6U17cpQudSM2LMHdI7TISMHhv41HJFKqlssFIgY9qVmiCUFqpFFpkrVomDO3V3rsm~5ivu-JEKNZpK04BLt3HmhJYVOxA4elVVw2S3-Wdu1YejqiaKEM23blonRpPi-nRr50qvKocVVIo7IqHHNeEToJQLgkf7x~xEE~xeFOi37luPDUwIdFinP6hvYngYEXQCtpk5W7GSfoMOPoBLvsOU15LyIJPyjVWDVe5~TiBuPfDZ1bdhdCYYg6qQjIIu1kiA-m~gsEGR9zyYymn4Hr0SdGc03NhxiappSIbMPt5K9AUeaE2dNAy5pNiNzTLExRZlIXdwnyjMG2xKQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

9. Rane, N., Choudhary, S., & Rane, J. (2024). Artificial intelligence for enhancing resilience. Journal of Applied Artificial Intelligence, 5(2), 1-33. https://sabapub.com/index.php/jaai/article/view/1053

10. Dash, B., Ansari, M. F., Sharma, P., & Ali, A. (2022). Threats and opportunities with AI-based cyber security intrusion detection: a review. International Journal of Software Engineering & Applications (IJSEA), 13(5). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4323258

11. Ghillani, D. (2022). Deep learning and artificial intelligence framework to improve the cyber security. Authorea Preprints. https://d197for5662m48.cloudfront.net/documents/publicationstatus/90291/preprint_pdf/c12f4b6dfcb0ece3a42a357ad2203fac.pdf

12. Saeed, S., Altamimi, S. A., Alkayyal, N. A., Alshehri, E., & Alabbad, D. A. (2023). Digital transformation and cybersecurity challenges for businesses resilience: Issues and recommendations. Sensors, 23(15), 6666. https://www.mdpi.com/1424-8220/23/15/6666

13. Tao, F., Akhtar, M. S., & Jiayuan, Z. (2021). The future of artificial intelligence in cybersecurity: A comprehensive survey. EAI Endorsed Transactions on Creative Technologies, 8(28). https://www.researchgate.net/profile/Muhammad-Akhtar-164/publication/353046785_The_future_of_Artificial_Intelligence_in_Cybersecurity_A_Comprehensive_Survey/links/60e5fe731c28af345850da39/The-future-of-Artificial-Intelligence-in-Cybersecurity-A-Comprehensive-Survey.pdf

14. Schmitt, M. (2023). Securing the digital world: Protecting smart infrastructures and digital industries with artificial intelligence (AI)-enabled malware and intrusion detection. Journal of Industrial Information Integration, 36, 100520. https://www.sciencedirect.com/science/article/pii/S2452414X23000936

15. Guembe, B., Azeta, A., Misra, S., Osamor, V. C., Fernandez-Sanz, L., & Pospelova, V. (2022). The emerging threat of ai-driven cyber attacks: A review. Applied Artificial Intelligence, 36(1), 2037254. https://www.tandfonline.com/doi/full/10.1080/08839514.2022.2037254

16. Bokhari, S. A. A., & Myeong, S. (2023). The influence of artificial intelligence on e-Governance and cybersecurity in smart cities: A stakeholder’s perspective. IEEE Access, 11, 69783-69797. https://ieeexplore.ieee.org/abstract/document/10177170

17. Aziz, L. A. R., & Andriansyah, Y. (2023). The role artificial intelligence in modern banking: an exploration of AI-driven approaches for enhanced fraud prevention, risk management, and regulatory compliance. Reviews of Contemporary Business Analytics, 6(1), 110-132. https://core.ac.uk/download/pdf/578755756.pdf

18. Narsimha, B., Raghavendran, C. V., Rajyalakshmi, P., Reddy, G. K., Bhargavi, M., & Naresh, P. (2022). Cyber defense in the age of artificial intelligence and machine learning for financial fraud detection application. International Journal of Electrical and Electronics Research, 10(2), 87-92. https://ijeer.forexjournal.co.in/archive/volume-10/ijeer-100206.html

19. Salama, R., & Al-Turjman, F. (2023). Cyber-security countermeasures and vulnerabilities to prevent social-engineering attacks. In Artificial intelligence of health-enabled spaces (pp. 133-144). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003322887-7/cyber-security-countermeasures-vulnerabilities-prevent-social-engineering-attacks-ramiz-salama-fadi-al-turjman

20. Kaur, R., Gabrijelčič, D., & Klobučar, T. (2023). Artificial intelligence for cybersecurity: Literature review and future research directions. Information Fusion, 97, 101804. https://www.sciencedirect.com/science/article/pii/S1566253523001136

21. Bharadiya, J. P. (2023). AI-driven security: how machine learning will shape the future of cybersecurity and web 3.0. American Journal of Neural Networks and Applications, 9(1), 1-7. https://www.researchgate.net/profile/Saqib-Luqman/publication/371983373_Jasmin_Praful_Bharadiya_AI-Driven_Security_How_Machine_Learning_Will_Shape_the_Future_of_Cybersecurity_and_Web_30/links/64a0e5948de7ed28ba6addcd/Jasmin-Praful-Bharadiya-AI-Driven-Security-How-Machine-Learning-Will-Shape-the-Future-of-Cybersecurity-and-Web-30.pdf

22. Rana, N. P., Chatterjee, S., Dwivedi, Y. K., & Akter, S. (2022). Understanding dark side of artificial intelligence (AI) integrated business analytics: assessing firm’s operational inefficiency and competitiveness. European Journal of Information Systems, 31(3), 364-387. https://www.tandfonline.com/doi/full/10.1080/0960085X.2021.1955628

23. Chehri, A., Fofana, I., & Yang, X. (2021). Security risk modeling in smart grid critical infrastructures in the era of big data and artificial intelligence. Sustainability, 13(6), 3196. https://www.mdpi.com/2071-1050/13/6/3196

24. Awotunde, J. B., & Misra, S. (2022). Feature extraction and artificial intelligence-based intrusion detection model for a secure internet of things networks. In Illumination of artificial intelligence in cybersecurity and forensics (pp. 21-44). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-030-93453-8_2

25. Rashid, A. B., Kausik, A. K., Al Hassan Sunny, A., & Bappy, M. H. (2023). Artificial intelligence in the military: An overview of the capabilities, applications, and challenges. International journal of intelligent systems, 2023(1), 8676366. https://onlinelibrary.wiley.com/doi/full/10.1155/2023/8676366

26. Varma, A. J., Taleb, N., Said, R. A., Ghazal, T. M., Ahmad, M., Alzoubi, H. M., & Alshurideh, M. (2023). A roadmap for SMEs to adopt an AI based cyber threat intelligence. In The effect of information technology on business and marketing intelligence systems (pp. 1903-1926). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-12382-5_105

27. Mishra, S. (2023). Exploring the impact of AI-based cyber security financial sector management. Applied Sciences, 13(10), 5875. https://www.mdpi.com/2076-3417/13/10/5875

28. Ahmed, A., Awaıs, M., Sıraj, M., & Umar, M. (2023). Enhancing cybersecurity with trust-based machine learning: A defense against ddos and packet suppression attacks. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 23, 262-268. http://www.epstem.net/en/download/article-file/3441854

29. Allal-Chérif, O., Simón-Moya, V., & Ballester, A. C. C. (2021). Intelligent purchasing: How artificial intelligence can redefine the purchasing function. Journal of Business Research, 124, 69-76. https://www.sciencedirect.com/science/article/abs/pii/S0148296320308031

30. Mahalakshmi, V., Kulkarni, N., Kumar, K. P., Kumar, K. S., Sree, D. N., & Durga, S. (2022). The role of implementing artificial intelligence and machine learning technologies in the financial services industry for creating competitive intelligence. Materials Today: Proceedings, 56, 2252-2255. https://www.sciencedirect.com/science/article/abs/pii/S221478532107601X

31. Judijanto, L., Hindarto, D., & Wahjono, S. I. (2023). Edge of enterprise architecture in addressing cyber security threats and business risks. International Journal Software Engineering and Computer Science (IJSECS), 3(3), 386-396. https://journal.lembagakita.org/ijsecs/article/view/1816

32. Ahanger, T. A., Aljumah, A., & Atiquzzaman, M. (2022). State-of-the-art survey of artificial intelligent techniques for IoT security. Computer Networks, 206, 108771. https://www.sciencedirect.com/science/article/abs/pii/S138912862200007X

33. Ahsan, M., Nygard, K. E., Gomes, R., Chowdhury, M. M., Rifat, N., & Connolly, J. F. (2022). Cybersecurity threats and their mitigation approaches using Machine Learning—A Review. Journal of Cybersecurity and Privacy, 2(3), 527-555. https://www.mdpi.com/2624-800X/2/3/27

34. Iwendi, C., Rehman, S. U., Javed, A. R., Khan, S., & Srivastava, G. (2021). Sustainable security for the internet of things using artificial intelligence architectures. ACM Transactions on Internet Technology (TOIT), 21(3), 1-22. https://dl.acm.org/doi/abs/10.1145/3448614

35. Bahrini, A., Khamoshifar, M., Abbasimehr, H., Riggs, R. J., Esmaeili, M., Majdabadkohne, R. M., & Pasehvar, M. (2023, April). ChatGPT: Applications, opportunities, and threats. In 2023 Systems and Information Engineering Design Symposium (SIEDS) (pp. 274-279). IEEE. https://ieeexplore.ieee.org/abstract/document/10137850

36. Zaman, Shakila, Khaled Alhazmi, Mohammed A. Aseeri, Muhammad Raisuddin Ahmed, Risala Tasin Khan, M. Shamim Kaiser, and Mufti Mahmud. "Security threats and artificial intelligence based countermeasures for internet of things networks: a comprehensive survey." Ieee Access 9 (2021): 94668-94690. https://ieeexplore.ieee.org/abstract/document/9456954

37. Krichen, M. (2023). Strengthening the security of smart contracts through the power of artificial intelligence. Computers, 12(5), 107. https://www.mdpi.com/2073-431X/12/5/107

38. Nozari, H., Szmelter-Jarosz, A., & Ghahremani-Nahr, J. (2022). Analysis of the challenges of artificial intelligence of things (AIoT) for the smart supply chain (case study: FMCG industries). Sensors, 22(8), 2931. https://www.mdpi.com/1424-8220/22/8/2931

39. Raza, A., Munir, K., Almutairi, M. S., & Sehar, R. (2023). Novel class probability features for optimizing network attack detection with machine learning. IEEE Access, 11, 98685-98694. https://ieeexplore.ieee.org/abstract/document/10246280

40. Hernandez-Jaimes, M. L., Martinez-Cruz, A., Ramírez-Gutiérrez, K. A., & Feregrino-Uribe, C. (2023). Artificial intelligence for IoMT security: A review of intrusion detection systems, attacks, datasets and Cloud–Fog–Edge architectures. Internet of Things, 23, 100887. https://www.sciencedirect.com/science/article/pii/S254266052300210X

41. Jun, Y., Craig, A., Shafik, W., & Sharif, L. (2021). Artificial intelligence application in cybersecurity and cyberdefense. Wireless communications and mobile computing, 2021(1), 3329581. https://onlinelibrary.wiley.com/doi/full/10.1155/2021/3329581

42. Zhao, L., Zhu, D., Shafik, W., Matinkhah, S. M., Ahmad, Z., Sharif, L., & Craig, A. (2022). Artificial intelligence analysis in cyber domain: A review. International Journal of Distributed Sensor Networks, 18(4), 15501329221084882. https://journals.sagepub.com/doi/full/10.1177/15501329221084882

43. Raj, R., Singh, A., Kumar, V., & Verma, P. (2023). Analyzing the potential benefits and use cases of ChatGPT as a tool for improving the efficiency and effectiveness of business operations. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 3(3), 100140. https://www.sciencedirect.com/science/article/pii/S2772485923000571

44. Ansari, M. F. (2022). A quantitative study of risk scores and the effectiveness of AI-based Cybersecurity Awareness Training Programs. International Journal of Smart Sensor and Adhoc Network, 3(3), 1. https://d1wqtxts1xzle7.cloudfront.net/85061698/ijssan.2022-libre.pdf?1651075914=&response-content-disposition=inline%3B+filename%3DA_Quantitative_Study_of_Risk_Scores_and.pdf&Expires=1741474443&Signature=bCnpRQRYfH90YSckGbvt~kY5YkH7KZ3yquwMXeoUSTQQfP83xiR-qFkosdVnFqK~RDEgoR0V7Z84gDEfFmmZri6laM~BRZUVJ8HyE6oLgjGbP~sSL2miyN5vE9bwof3O7GB~7L1IgCRUII4vWLmvhcauVgYFihfASzY5hu2sVvBb6IC~DNmuwqNv~wuauIuPjM-fi7g81ivlUnDhLTns5fNBgzFgnLMop1zhRBuICa4gDnighXZQzr6D1cCImt131B9IqYaQxEyiJZOSEMreEx0X95xAOmFlyH55rAiJMUL8UBcI8UVstqzKKYzQF4AAjjKitII6zOit74XSvqRhrw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

45. Dasawat, S. S., & Sharma, S. (2023, May). Cyber security integration with smart new age sustainable startup business, risk management, automation and scaling system for entrepreneurs: an artificial intelligence approach. In 2023 7th international conference on intelligent computing and control systems (ICICCS) (pp. 1357-1363). IEEE. https://ieeexplore.ieee.org/abstract/document/10142779

46. Richey Jr, R. G., Chowdhury, S., Davis‐Sramek, B., Giannakis, M., & Dwivedi, Y. K. (2023). Artificial intelligence in logistics and supply chain management: A primer and roadmap for research. Journal of Business Logistics, 44(4), 532-549. https://onlinelibrary.wiley.com/doi/full/10.1111/jbl.12364

47. Haapamäki, E., & Sihvonen, J. (2022). Cybersecurity in accounting research. In Artificial Intelligence in Accounting (pp. 182-214). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9781003198123-10/cybersecurity-accounting-research-elina-haapam%C3%A4ki-jukka-sihvonen

48. Rodrigues, A. R. D., Ferreira, F. A., Teixeira, F. J., & Zopounidis, C. (2022). Artificial intelligence, digital transformation and cybersecurity in the banking sector: A multi-stakeholder cognition-driven framework. Research in International Business and Finance, 60, 101616. https://www.sciencedirect.com/science/article/abs/pii/S0275531922000046

49. Mahor, V., Rawat, R., Kumar, A., Garg, B., & Pachlasiya, K. (2023). IoT and artificial intelligence techniques for public safety and security. In Smart urban computing applications (pp. 111-126). River Publishers. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003373247-5/iot-artificial-intelligence-techniques-public-safety-security-vinod-mahor-sadhna-romil-rawat-anil-kumar-bhagwati-garg-kiran-pachlasiya

50. Liu, T., Sabrina, F., Jang-Jaccard, J., Xu, W., & Wei, Y. (2021). Artificial intelligence-enabled DDoS detection for blockchain-based smart transport systems. Sensors, 22(1), 32. https://www.mdpi.com/1424-8220/22/1/32

51. Walters, R., & Novak, M. (2021). Cyber security, artificial intelligence, data protection & the law. Berlin: Springer. https://link.springer.com/book/10.1007/978-981-16-1665-5

52. Rajendran, R. M., & Vyas, B. (2023). Cyber security threat and its prevention through artificial intelligence technology. International Journal for Multidisciplinary Research, 5(6). https://www.researchgate.net/profile/Bhuman-Vyas/publication/376717717_Cyber_Security_Threat_And_Its_Prevention_Through_Artificial_Intelligence_Technology/links/6584c9ab3c472d2e8e79c4b2/Cyber-Security-Threat-And-Its-Prevention-Through-Artificial-Intelligence-Technology.pdf

53. Bonfanti, M. E. (2022). Artificial intelligence and the offence-defence balance in cyber security. Cyber Security: Socio-Technological Uncertainty and Political Fragmentation. London: Routledge, 64-79. https://library.oapen.org/bitstream/handle/20.500.12657/52574/1/9781000567113.pdf#page=79

54. Dataset Link

https://www.kaggle.com/datasets/Microsoft/microsoft-security-incident-prediction

Downloads

Published

2025-06-11

How to Cite

Reza, J. (2025). ASSESSING THE EFFECTIVE OF ARTIFICIAL INTELLIGENCE IN PREVENTING CYBER ATTACKS ON BUSINESSES. Journal of Adaptive Learning Technologies, 2(5), 82–108. Retrieved from https://scientificbulletin.com/index.php/JALT/article/view/982

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.